2,578 research outputs found

    The Mechanics and Statistics of Active Matter

    Get PDF
    Active particles contain internal degrees of freedom with the ability to take in and dissipate energy and, in the process, execute systematic movement. Examples include all living organisms and their motile constituents such as molecular motors. This article reviews recent progress in applying the principles of nonequilibrium statistical mechanics and hydrodynamics to form a systematic theory of the behaviour of collections of active particles -- active matter -- with only minimal regard to microscopic details. A unified view of the many kinds of active matter is presented, encompassing not only living systems but inanimate analogues. Theory and experiment are discussed side by side.Comment: This review is to appear in volume 1 of the Annual Review of Condensed Matter Physics in July 2010 and is posted here with permission from that journa

    A nationally representative study on socio-demographic and geographic correlates, and trends in tobacco use in Nepal

    Get PDF
    © 2019, The Author(s). Tobacco control still poses an immense challenge for the government of Nepal. Updated knowledge on the current pattern of tobacco use and its associated factors will be helpful for policy makers to curb the tobacco epidemic. This study fills this gap by, (i) exploring demographic, socio-economic and geographic correlates of current tobacco use using a nationally representative sample of 15–49-year adults from Nepal Demographic Health survey 2016, and (ii) examining the prevalence and trends of both smoking and non-smoking forms of tobacco use in a nationally representative sample of 15–49-year adults drawn from three consecutive Demographic Health Surveys (DHS) between 2006 and 2016.Among males, the prevalence of smokeless tobacco use was higher than that of smoking (40.1% and 27.4% respectively), whereas among females smoking was more common than smokeless tobacco use (prevalence of 5.5% and 3.8% respectively). Both smoking and smokeless tobacco use were associated with older age and lower level of education. Among males, those living in urban areas were more likely to consume any form of tobacco. Residents of terai/plains were more likely to use smokeless tobacco. The concentration curves on cumulative proportion of tobacco use ranked by wealth quintiles showed tobacco use to be highest among the lowest socio-economic groups in both males and females in all three survey years. We found a decreasing trend of tobacco smoking and an increasing trend of smokeless tobacco use over the 10-year period. However, the consumption of both forms of tobacco increased in young males during the same period. Proper monitoring of adherence to directives of the anti-tobacco law should be ensured to curb the increasing burden of tobacco use among young males, and a similar effort is needed to sustain the decline in tobacco uses among other population groups in Nepal

    Geographic and socio-economic variation in markers of indoor air pollution in Nepal: Evidence from nationally-representative data

    Get PDF
    © 2019 The Author(s). Background: In low-income countries such as Nepal, indoor air pollution (IAP), generated by the indoor burning of biomass fuels, is the top-fourth risk factor driving overall morbidity and mortality. We present the first assessment of geographic and socio-economic determinants of the markers of IAP (specifically fuel types, cooking practices, and indoor smoking) in a nationally-representative sample of Nepalese households. Methods: Household level data on 11,040 households, obtained from the 2016 Nepal Demographic and Health Survey, were analyzed. Binary logistic regression analyses were conducted to assess the use of fuel types, indoor cooking practices, indoor smoking and IAP with respect to socio-economic indicators and geographic location of the household. Results: More than 80% of the households had at least one marker of IAP: 66% of the household used unclean fuel, 45% did not have a separate kitchen to cook in, and 43% had indoor smoking. In adjusted binary logistic regression, female and educational attainment of household's head favored cleaner indoor environment, i.e., using clean fuel, cooking in a separate kitchen, not smoking indoors, and subsequently no indoor pollution. In contrast, households belonging to lower wealth quintile and rural areas did not favor a cleaner indoor environment. Households in Province 2, compared to Province 1, were particularly prone to indoor pollution due to unclean fuel use, no separate kitchen to cook in, and smoking indoors. Most of the districts had a high burden of IAP and its markers. Conclusions: Fuel choice and clean indoor practices are dependent on household socio-economic status. The geographical disparity in the distribution of markers of IAP calls for public health interventions targeting households that are poor and located in rural areas

    Application of single-level and multi-level modeling approach to examine geographic and socioeconomic variation in underweight, overweight and obesity in Nepal: findings from NDHS 2016

    Get PDF
    © 2020, The Author(s). Nepal’s dual burden of undernutrition and over nutrition warrants further exploration of the population level differences in nutritional status. The study aimed to explore, for the first time in Nepal, potential geographic and socioeconomic variation in underweight and overweight and/or obesity prevalence in the country, adjusted for cluster and sample weight. Data came from 14,937 participants, including 6,172 men and 8,765 women, 15 years or older who participated in the 2016 Nepal Demography and Health Survey (NDHS). Single-level and multilevel multi-nominal logistic regression models and Lorenz curves were used to explore the inequalities in weight status. Urban residents had higher odds of being overweight and/or obese (OR: 1.89, 95% CI: 1.62–2.20) and lower odds of being underweight (OR: 0.81, 95% CI: 0.70–0.93) than rural residents. Participants from Provinces 2, and 7 were less likely to be overweight/obese and more likely to be underweight (referent: province-1). Participants from higher wealth quintile households were associated with higher odds of being overweight and/or obese (P-trend < 0.001) and lower odds of being underweight (P-trend < 0.001). Urban females at the highest wealth quintile were more vulnerable to overweight and/or obesity as 49% of them were overweight and/or obese and nearly 39% at the lowest wealth quintile were underweight

    Friction stir welding of EH46 steel grade at dwell stage: Microstructure evolution

    Get PDF
    This work aims to understand the effect of changes in friction stir welding (FSW) process parameters on the resulting microstructure specifically the effect of the plunge depth and tool rotational speed, during the “dwell” period on the resulting microstructure. A series of (FSW) of 14.8-mm-thick EH46 steel plate using a hybrid polycrystalline boron nitride FSW tool with spindle speeds of 120 and 200 revolutions per minute have been produced with increasing plunge depths from 0.1 to 0.7 mm. Thermocouples embedded around the top surface of each plunge case were used to measure the peak temperature during the process. The plunge depths were measured using the infinite focus microscopy, and the microstructure of all the heat affected regions was investigated extensively by scanning electron microscopy. It was found that phase transformation is sensitive to the variation on plunge depth. Small increase in plunge depth caused a significant change in the microstructure. Increasing tool rotational speed was also found to cause a significant difference in the microstructure

    ADM solution for Cu/CuO –water viscoplastic nanofluid transient slip flow from a porous stretching sheet with entropy generation, convective wall temperature and radiative effects

    Get PDF
    A mathematical modelis presented for entropy generation in transient hydromagnetic flow of an electroconductive magnetic Casson (non-Newtonian) nanofluid over a porous stretching sheet in a permeable medium. The Cattaneo-Christov heat flux model is employed to simulate non-Fourier (thermal relaxation) effects. A Rosseland flux model is implemented to model radiative heat transfer. The Darcy model is employed for the porous media bulk drag effect. Momentum slip is also included to simulate non-adherence of the nanofluid at the wall. The transformed, dimensionless governing equations and boundary conditions (featuring velocity slip and convective temperature) characterizing the flow are solved with the Adomian Decomposition Method (ADM). Bejan’s entropy minimization generation method is employed. Cu-water and CuO-water nanofluids are considered. Extensive visualization of velocity, temperature and entropy generation number profiles is presented for variation in magnetic field parameter, unsteadiness parameter, Casson parameter, nanofluid volume fraction, permeability parameter, suction/injection parameter, radiative parameter, Biot number, relaxation time parameter, velocity slip parameter, Brinkman number (dissipation parameter), temperature ratio and Prandtl number. The evolution of skin friction and local Nusselt number (wall heat transfer rate) are also studied. The ADM computations are validated with simpler models from the literature. The solutions show that with elevation in volume fraction of nanoparticle and Brinkman number, the entropy generation magnitudes are increased. An increase in Darcy number also increases the skin friction and local Nusselt number. Increasing magnetic field, volume fraction, unsteadiness, thermal radiation, velocity slip, Casson parameters, Darcy and Biot numbers are all observed to boost temperatures. However, temperatures are reduced with increasing non-Fourier (thermal relaxation) parameter. Greater flow acceleration is achieved for CuO-water nanofluid compared with Cu-water nanofluid although the contrary response is computed in temperature distributions. The simulations are relevant to the high temperature manufacturing fluid dynamics of magnetic nanoliquids, smart coating systems etc

    Unsteady reactive magnetic radiative micropolar flow, heat and mass transfer from an inclined plate with joule heating: a model for magnetic polymer processing

    Get PDF
    Magnetic polymer materials processing involves many multi-physical and chemical effects. Motivated by such applications, in the present work a theoretical analysis is conducted of combined heat and mass transfer in unsteady mixed convection flow of micropolar fluid over an oscillatory inclined porous plate in a homogenous porous medium with heat source, radiation absorption and Joule dissipation. A first order homogenous chemical reaction model is used. The transformed non-dimensional boundary value problem is solved using a perturbation method and Runge-Kutta fourth order numerical quadrature (shooting technique). The emerging parameters dictating the transport phenomena are shown to be the gyro-viscosity micropolar material parameter, magnetic field parameter, permeability of the porous medium, Prandtl number, Schmidt number, thermal Grashof number, species Grashof number, thermal radiation-conduction parameter, heat absorption parameter, radiation absorption parameter, Eckert number, chemical reaction parameter and Eringen coupling number (vortex viscosity ratio parameter). The impact of these parameters on linear velocity, microrotation (angular velocity), temperature and concentration are evaluated in detail. Results for skin friction coefficient, couple stress coefficient, Nusselt number and Sherwood number are also included. Couple stress is observed to be reduced with stronger magnetic field. Verification of solutions is achieved with earlier published analytical results

    PSO-GWO Optimized Fractional Order PID Based Hybrid Shunt Active Power Filter for Power Quality Improvements

    Get PDF
    This paper presents a Hybrid Shunt Active Power Filter (HSAPF) optimized by hybrid Particle Swarm Optimization-Grey Wolf Optimization (PSO-GWO) and Fractional Order Proportional-Integral-Derivative Controller (FOPIDC) for reactive power and harmonic compensation under balance and unbalance loading conditions. Here, the parameters of FOPID controller are tuned by PSO-GWO technique to mitigate the harmonics. Comparing Passive with Active Filters, the former is tested to be bulky and design is complex and the later is not cost effective for high rating. Hence, a hybrid structure of shunt active and passive filter is designed using MATLAB/Simulink and in real time experimental set up. The compensation process for shunt active filter is different from predictable methods such as (p-q) or (id-i ) theory, in which only the source current is to be sensed. The performance of the proposed controller is tested under different operating conditions such as steady and transient states and indices like Total Harmonic Distortion (THD), Input Power Factor (IPF), Real Power (P) and Reactive Power (Q) are estimated and compared with that of other controllers. The parameters of FOPIDC and Conventional PID Controller (CPIDC) are optimized by the techniques such as PSO, GWO and hybrid PSO-GWO. The comparative simulation/experiment results reflect the better performance of PSO-GWO optimized FOPIDC based HSAPF with respect to PSO/GWO optimized FOPIDC/CPIDC based HSAPF under different operating conditions.

    Adomain computation of radiative-convective bi-directional stretching flow of a magnetic non-Newtonian fluid in porous media with homogeneous-heterogeneous reactions

    Get PDF
    In the present communication, laminar, incompressible, hydromagnetic flow of an electrically conducting non-Newtonian (Sisko) fluid over a bi-directional stretching sheet in a porous medium is studied theoretically. Thermal radiation flux, homogeneous-heterogeneous chemical reactions and convective wall heating are included in the model. Darcy’s model is employed for the porous medium and Rosseland’s model for radiation heat transfer. The governing partial differential equations for mass, momentum, energy and concentration are reduced into ordinary differential equations via similarity transformations. The resultant nonlinear ordinary differential equations with transformed boundary conditions are then solved via the semi-analytical Adomain decomposition method (ADM). Validation with earlier studies is included for the non-radiative case. Extensive visualization of velocity, temperature and species concentration distributions for various emerging parameters is included. Increasing magnetic field and inverse permeability parameter are observed to decelerate both the primary and secondary velocity magnitudes whereas they increase temperatures in the regime. Increasing sheet stretching ratio weakly accelerates the primary flow throughout the boundary layer whereas it more dramatically accelerates the secondary flow near sheet surface. Temperature is consistently reduced with increasing stretching sheet ratio whereas it is strongly enhanced with greater radiative parameter. With greater Sisko non-Newtonian power-law index the primary velocity and temperature are decreased whereas the secondary velocity is increased. Increasing both homogenous and heterogenous chemical reaction parameters is found to weakly and more strongly, respectively, deplete concentration magnitudes whereas greater Schmidt number enhances them. Primary and secondary skin friction and Nusselt number profiles are also computed. The study is relevant to electro-conductive (magnetic polymer) materials processing operations
    corecore